Processing equipment design

Exercise No. 6:
 Calculation of conical cover of vessel loaded with internal or external overpressure

EVROPSKÝ SOCIÁLNÍ FOND
PRAHA \& EU:INVESTUJEME DO VAŠí BUDOUCNOSTI

Lecturer: Pavel Hoffman

http://fsinet.fsid.cvut.cz/cz/U218/peoples/hoffman/index.htm
e-mail: pavel.hoffman@fs.cvut.cz

Calculation of conical cover of vessel loaded with internal or external overpressure 100 kPa

(according ČSN 690010, part 4.6)

Sketch of cylindrical vessel with conical cover and neck

1 - cone
2 - cylinder

Given data:

- External diameter of cylindrical part
- Realized wall thickness of cylindrical part
- Internal diameter of cylindrical part
- Calculating internal/external overpressure
- Allowed stress of material of cylind. part
- Allowed stress of material of conical part
- Modulus of elasticity for both materials
- Poisson constant for both materials
- Sum of all allowances (corrosion etc.)
- Neck = tube $\phi 159 \times 4.5$
- Height of conical cover (for $\alpha_{1}=70^{\circ}$)
- Coefficient of longitudinal weld in cone
$\mathrm{D}_{\mathrm{e}}=1500 \mathrm{~mm}$
$\mathrm{S}_{2}=7 \mathrm{~mm}$
$D_{i}=D=1486 \mathrm{~mm}$
$\mathrm{p}_{\mathrm{i}, \mathrm{e}}=100 \mathrm{kPa}$
$[\sigma]_{1}=\sigma_{\mathrm{D} 1}=140 \mathrm{MPa}$
$[\sigma]_{2}=\sigma_{\mathrm{D} 2}=140 \mathrm{MPa}$
$\mathrm{E}=206 \mathrm{GPa}$
$\mu=\mathbf{0 , 3}$
$c_{1}=c_{2}=1 \mathrm{~mm}$
$d_{1}=150 \mathrm{~mm}$
$\mathrm{H} \approx 240 \mathrm{~mm}$
$\varphi_{W}=0,7$

Internal overpressure 100 kPa - half apex angle $\alpha_{1}=45^{\circ}$

Conical shell wall thickness is estimated on the basis of the relationship in ČSN as $\mathrm{s}_{1}=8.5 \mathrm{~mm}$

$$
s_{C}=s_{R} / \cos \alpha_{1}=(7-1) / \cos 45=6 / 0.707 \approx 8.5 \mathrm{~mm}
$$

Calculated length of transition part (it corresponds to the reach of stress peak)

$$
\begin{array}{ll}
a_{1}=0,7 * \sqrt{\frac{D}{\cos \alpha} *\left(s_{1}-c\right)} & \begin{array}{l}
L_{t}=0.55 * v\left(D^{*} s\right) \\
L=1.65 * v\left(D D_{s}\right)
\end{array} \\
a_{1}=0,7 * \sqrt{\frac{1486}{\cos 45} *(8,5-1)}=87,9 \mathrm{~mm} &
\end{array}
$$

Calculated diameter of conical shell

$$
\begin{aligned}
& D_{C}=D-1,4 * a_{1} * \sin \alpha_{1} \\
& D_{C}=1486-1.4 * 87.9 * \sin _{\text {PED-ex. } 6} 45=1399.0 \mathrm{~mm}
\end{aligned}
$$

Determining whether the calculation formulas given in CSN can be used for our case:

$$
\begin{aligned}
& 0,001 \leq \frac{s_{1} * \cos \propto_{1}}{D} \leq 0,05 \\
& \frac{s_{1} * \cos \propto_{1}}{D}=\frac{8,5 * \cos 45}{1486}=0,004 \quad \text { OK }
\end{aligned}
$$

The minimum calculated wall thickness of conical shell

$$
s_{C R}=\frac{D_{C} * p}{2 * \sigma_{D} * \varphi_{P}-p} * \frac{1}{\cos \alpha_{1}}=\frac{1399 * 0.100}{2 * 140 * 0.7+0.100} * \frac{1}{\cos 45}=1.01 \mathrm{~mm}
$$

Maximum internal pressure that can withstand the conical shell

$$
[p]=\frac{2 * \sigma_{D}^{*} \varphi_{P}^{*}\left(s_{1}-c\right)}{\frac{D_{C}}{\cos \alpha_{1}}+\left(s_{1}-c\right)}=\frac{2 * 140 * 0.7 *(8.5-1)}{\frac{1399}{\cos 45}+(8.5-1)}=0.74 \mathrm{MPa}
$$

Internal overpressure 100 kPa - half apex angle $\alpha_{1}=70^{\circ}$

Conical shell wall thickness is estimated on the basis of the relationship in ČSN again as $\mathrm{s}_{1}=8.5 \mathrm{~mm}$
Calculated length of transition part (it corresponds to the reach of stress peak)

$$
\begin{aligned}
& a_{1}=0.7 * \sqrt{\frac{D}{\cos \alpha_{1}} *\left(s_{1}-c\right)} \\
& a_{1}=0.7 * \sqrt{\frac{1486}{\cos 70} *(8.5-1)}=126.3 \mathrm{~mm}
\end{aligned}
$$

$$
\text { (} x \text { for } \alpha_{1}=45^{\circ} \text { it was } 87.9 \mathrm{~mm} \text {) }
$$

$$
\rightarrow \text { for }>\text { angle is longer reach }
$$

of stress peak

Calculated diameter of conical shell

$$
D_{C}=D-1.4 * a_{1}^{*} \sin \alpha_{1}
$$

$$
D_{C}=1486-1.4 * 126.3 * \sin 70=1320 \mathrm{~mm} \quad(\times 1399 \mathrm{~mm})
$$

\rightarrow for > angle is < calculated

Determining whether the calculation formulas given in CSN can be used for our case:

$$
\begin{aligned}
& 0,001 \leq \frac{s_{1} * \cos \propto_{1}}{D} \leq 0,05 \\
& \frac{s_{1} * \cos \propto_{1}}{D}=\frac{8,5 * \cos 70}{1486}=0,002 \quad \text { OK }
\end{aligned}
$$

The minimum calculated wall thickness of conical shell

$$
s_{C R}=\frac{D_{C} * p}{2 * \sigma_{D} * \varphi_{P}-p} * \frac{1}{\cos \alpha_{1}}=\frac{1320 * 0,100}{2 * 140 * 0.7+0.100} * \frac{1}{\cos 70}=1.97 \mathrm{~mm}
$$

Maximum internal pressure that can withstand the conical shell

$$
[p]=\frac{2 * \sigma_{D} * \varphi_{P} *\left(s_{1}-c\right)}{\frac{D_{C}}{\cos \alpha_{1}}+\left(s_{1}-c\right)}=\frac{2 * 140 * 0.7 *(8.5-1)}{\frac{1399}{\cos 70}+(8.5-1)}=0.36 \mathrm{MPa} \quad(\times 0.74 \mathrm{MPa})
$$

External overpressure 100 kPa - half apex angle $\alpha_{1}=45^{\circ}$

Preliminary determination of wall thickness $\boldsymbol{s}_{\underline{1}}$
 $=$ the real situation in which the heater has worked

The wall thickness is specified according equations valid for cylinder (part 4.5) multiplied by value $1 / \cos \alpha_{1}$.

In our previous example of the cylindrical vessel loaded with external pressure we specified the cylinder thickness without allowances:
$s_{R 2}=\operatorname{Max}\left\{K_{2} * D * 10^{-2} ; \frac{1.1 * p * D}{2 * \sigma_{D}}\right\}=4.80 \mathrm{~mm}$

$$
K_{1}=\frac{n_{U} * p}{2,4 * 10^{-6 * E}} \quad K_{3}=\frac{L}{D} \longrightarrow K_{2}=\frac{100 *(s-c)}{D}
$$

Then is the preliminary wall thickness of the conical part

$$
s_{R 1}=\frac{s_{R 2}}{\cos \alpha_{1}}=\frac{4.8}{\cos 45}=6.8 \mathrm{~mm}
$$

Preliminary designed wall thickness together with all allowances is

$\mathrm{s}_{1}=\mathrm{s}_{\mathrm{R} 1}+\mathrm{c}=6.8+1 \approx 8.0 \mathrm{~mm}$
Calculating diameter of a smooth conical shell without torus in connection with the cylinder (used in next calculations)
$D_{C}=D-1.4{ }^{*} a_{1}{ }^{*} \sin \alpha_{1}$
where is

$$
\begin{gathered}
a_{1}=0.7 * \sqrt{\frac{D}{\cos \alpha_{1}} *\left(s_{1}-c\right)} \\
a_{1}=0.7 * \sqrt{\frac{1486}{\cos 45} *(8.0-1)}=84.9 \mathrm{~mm} \quad \begin{array}{l}
\text { Calculated length of transition part } \\
\text { (it corresponds to the reach of stress pe }
\end{array} \\
\mathrm{D}_{\mathrm{C}}=1486-1.4 * 84.9 * \sin 45=1402 \mathrm{~mm} \quad \begin{array}{c}
\text { (} x \text { for internal pressure and } \\
\text { it was } 87.9 \mathrm{~mm} \text {) }
\end{array} \\
(\times 1399 \mathrm{~mm})
\end{gathered}
$$

Checking of the preliminary specified wall thickness for the external overpressure

Allowed external overpressure

$$
[p]=\frac{[p]_{p}}{\sqrt{1+\left(\frac{[p]_{p}}{[p]_{\varepsilon}}\right)^{2}}}
$$

Allowed external overpressure in plastic state (region)
(similar relationship to internal pressure = achieving of allowable stress in the shell)

$$
[p]_{P}=\frac{2 * \sigma_{D} *\left(s_{1}-c\right)}{\frac{D_{C}}{\cos \alpha_{1}}+\left(s_{1}-c\right)}=\frac{2 * 140 *(8.0-1)}{\frac{1402}{\cos 45}+(8.0-1)}=0.985 \mathrm{MPa}
$$

$$
\left[p_{P}\right]=\frac{2 *\left[\sigma_{D}\right]^{*}(s-c)}{D+(s-c)}
$$

$\mathrm{D} \rightarrow \mathrm{D}_{\mathrm{K}} / \cos \alpha_{1}$

Allowed external overpressure in elastic state (region) (stability loss in the elastic region, it is for $\sigma<\sigma_{D}$)

$$
[p]_{E}=\frac{20.8 * 10^{-6} * E}{n_{U} * B_{1}} * \frac{D_{E}}{l_{E}} *\left[\frac{100 *\left(s_{1}-c\right)}{\left(D_{E}\right)}\right]^{2} * \sqrt{\frac{100 *\left(s_{1}-c\right)}{D_{E}}} \quad \begin{aligned}
\text { For cylinder: } \\
\mathrm{D} \rightarrow \mathrm{D}_{\mathrm{E}} \\
\mathrm{I} \rightarrow \mathrm{I}_{\mathrm{E}}
\end{aligned}
$$

$n_{u}=2,4 \ldots$ safety coefficient against a stability loss (see cylinder) where effective dimensions of a conical shell are:

$$
l_{E}=\frac{D-d_{1}}{2 * \sin \alpha_{1}}=\frac{1486-150}{2 * \sin 45}=944.7 \mathrm{~mm}
$$

$$
D_{E}=\operatorname{Max}\left\{D_{E 1} ; D_{E 2}\right\}
$$

$$
D_{E 1}=\frac{D+d_{1}}{n_{U} * \cos \alpha_{1}}=\frac{1486+150}{2.4 * \cos 45}=1156.8 \mathrm{~mm}
$$

$$
D_{E 2}=\frac{D}{\cos \alpha_{1}}-0.31 *\left(D+d_{1}\right) * \sqrt{\frac{D+d_{1}}{s_{1}-c}} * \operatorname{tg} \alpha_{1}
$$

$$
D_{E 2}=\frac{1486}{\cos 45}-0.31 *(1486+150) * \sqrt{\frac{1486+150}{8.0-1}} * \operatorname{tg} 45=-5651 . \mathrm{mm}
$$

$$
\left(\text { for } \alpha_{1}=0 \rightarrow D_{E 1}=\left(D+d_{1}\right) / n_{u}<D ; D_{E 2}=D\right)
$$

effective length of conical shell
effective diameter of conical shell

D - higher diameter
d_{1} - lower diameter

$D_{E}=1156.8 \mathrm{~mm}$

Parameter B 1 is specified from equation

$$
B_{1}=\operatorname{Min}\left\{B_{11}=1.0 ; B_{12}=9,45 * \frac{D_{E}}{l_{E}} * \sqrt{\frac{D_{E}}{100 *\left(s_{1}-c\right)}}\right\}
$$

like for the cylinder

$$
B_{12}=9.45 * \frac{1156.8}{944.7} * \sqrt{\frac{1156.8}{100 *(8.0-1)}}=15.0
$$

$B_{1}=1.0$

Allowed external overpressure in elastic state (region) is

$$
\begin{aligned}
& {[p]_{E}=\frac{20.8 * 10^{-6} * 206 * 10^{3}}{2.4 * 1,0} * \frac{1156.8}{944.7} *\left[\frac{100 *(8.0-1)}{1156.8}\right]^{2} * \sqrt{\frac{100 *(8.0-1)}{1156.8}}} \\
& {[p]_{E}=0.622 \mathrm{MPa}}
\end{aligned}
$$

Then is the maximal allowed external overpressure for the preliminary specified cone wall thickness $s_{1}=8.0 \mathrm{~mm}$

$$
[p]=\frac{0.985}{\sqrt{1+\left(\frac{0.985}{0.622}\right)^{2}}}=0.526 M P a \geq 0.100 M P a
$$

Such conical shell is too overdesigned. Therefore we will repeat these calculations for a newly estimated cone wall thickness.

Note:
When calculating the cylindrical part of the vessel to the external overpressure the calculated wall thickness was $s_{R}=4.8 \mathrm{~mm}$, it means that the realized wall thickness (with allowances for corrosion etc.) was about 6 mm.
b) New estimation of the preliminary designed wall cone thickness together with all allowances

$$
\mathrm{s}_{1}=\mathrm{s}_{\mathrm{R} 1}+\mathrm{C}=4+1 \approx 5 \mathrm{~mm} \quad \begin{gathered}
(x 8 \mathrm{~mm}) \\
\text { (results of the last iteration of the } \\
\text { cone wall thickness calculation) }
\end{gathered}
$$

Calculating diameter of a smooth conical shell without torus in connection with the cylinder (used in next calculations)

$$
D_{C}=D-1.4^{*} a_{1}^{*} \sin \alpha_{1}
$$

where is

$$
\begin{aligned}
& a_{1}=0.7 * \sqrt{\frac{D}{\cos \alpha_{1}} *\left(s_{1}-c\right)} \\
& a_{1}=0.7 * \sqrt{\frac{1486}{\cos 45} *(5-1)}=64.1 \mathrm{~mm}
\end{aligned}
$$

Calculated length of transition part (it corresponds to the reach of stress peak)
(thinner wall \rightarrow shorter length of transition part)

$$
\text { (x } 84.9 \mathrm{~mm} \text {) }
$$

$D_{C}=1486-1.4 * 64.1 * \sin 45=1422.5 \mathrm{~mm}$
Checking of the preliminary specified wall thickness for the external overpressure

Allowed external overpressure

$$
[p]=\frac{[p]_{\rho}}{\sqrt{1+\left(\frac{[p]_{p}}{[p]_{\varepsilon}}\right)^{2}}}
$$

Allowed external overpressure in plastic state (region)

$$
[p]_{P}=\frac{2 * \sigma_{D} *\left(s_{1}-c\right)}{\frac{D_{C}}{\cos \alpha_{1}}+\left(s_{1}-c\right)}=\frac{2 * 140 *(5-1)}{\frac{1422.5}{\cos 45}+(5-1)}=0.556 \mathrm{MPa}
$$

Allowed external overpressure in elastic state (region)

$$
[p]_{E}=\frac{20.8 * 10^{-6} * E}{n_{U} * B_{1}} * \frac{D_{E}}{l_{E}} *\left[\frac{100 *\left(s_{1}-c\right)}{D_{E}}\right]^{2} * \sqrt{\frac{100 *\left(s_{1}-c\right)}{D_{E}}}
$$

where effective dimensions of a conical shell are

$$
l_{E}=\frac{D-d_{1}}{2 * \sin \alpha_{1}}=\frac{1486-150}{2 * \sin 45}=944.7 \mathrm{~mm}
$$

$$
D_{E}=\operatorname{Max}\left\{D_{\varepsilon 1} ; D_{E 2}\right\}_{15}
$$

$$
D_{E 1}=\frac{D+d_{1}}{n_{U} * \cos \alpha_{1}}=\frac{1486+150}{2.4 * \cos 45}=1156.8 \mathrm{~mm}
$$

$$
D_{E 2}=\frac{D}{\cos \alpha_{1}}-0.31 *\left(D+d_{1}\right) * \sqrt{\frac{D+d_{1}}{s_{1}-c}} * \operatorname{tg} \alpha_{1}
$$

$$
D_{E 2}=\frac{1486}{\cos 45}-0.31 *(1486+150) * \sqrt{\frac{1486+150}{5-1}} * \operatorname{tg} 45=-9205.9 \mathrm{~mm}
$$

$$
D_{E}=1156.8 \mathrm{~mm}
$$

$$
\text { (x } 1402 \mathrm{~mm} \text {) }
$$

$$
B_{1}=\operatorname{Min}\left\{B_{11}=1.0 ; B_{12}=9.45 * \frac{D_{E}}{l_{E}} * \sqrt{\frac{D_{E}}{100 *\left(s_{1}-c\right)}}\right\}
$$

$$
B_{12}=9.45 * \frac{1156.8}{944.7} * \sqrt{\frac{1156.8}{100 *(5-1)}}=19.7
$$

$$
\mathrm{B}_{1}=1.0
$$

$[p]_{E}=\frac{20.8 * 10^{-6} * 206 * 10^{3}}{2.4 * 1.0} * \frac{1156.8}{944.7} *\left[\frac{100 *(5-1)}{1156.8}\right]^{2} * \sqrt{\frac{100 *(5-1)}{1156.8}}$

$$
[p]_{E}=0.154 \mathrm{MPa}
$$

Then is the maximal allowed external overpressure for this specified cone wall thickness $s_{1}=5 \mathrm{~mm}$

$$
[p]=\frac{0.556}{\sqrt{1+\left(\frac{0.556}{0.154}\right)^{2}}}=0.148 M P a \geq 0.100 \mathrm{MPa}
$$

(x for $s_{1}=8 \mathrm{~mm}$ it was 0.526 MPa)

Note:
For $s_{1}=4.5 \mathrm{~mm}$ is the maximal external pressure $[p]=0.107 \mathrm{MPa}$ $=107 \mathrm{kPa}$. The value is practically equal to the given external overpressure.
For the cylinder was the wall thicknes $s_{2}=4.8 \mathrm{~mm}$.

External overpressure 100 kPa - half apex angle $\alpha_{1}=70^{\circ}$.

Preliminary specification of wall thickness s_{1}

The wall thickness is specified according equations valid for cylinder (part 4.5) multiplied by value $1 / \cos \alpha_{1}$.

In our previous example of the cylindrical vessel loaded with external pressure we specified the cylinder thickness without allowances:

$$
\begin{aligned}
s_{R 2} & =\operatorname{Max}\left\{K_{2} * D * 10^{-2} ; \frac{1.1 * p^{*} D}{2 * \sigma_{D}}\right\}=4.80 \mathrm{~mm} \\
K_{1} & =\frac{n_{U} * p}{2,4 * 10^{-6} * E} \quad K_{3}=\frac{L}{D} \longrightarrow \quad K_{2}=\frac{100 *(s-c)}{D}
\end{aligned}
$$

Then is the preliminary wall thickness of the conical part

$$
s_{R 1}=\frac{s_{R 2}}{\cos \alpha_{1}}=\frac{4.8}{\cos 70}=14.04 \mathrm{~mm}
$$

For $\alpha_{1}=45^{\circ}$ it was $s_{R 1}=6.8 \mathrm{~mm}$
\rightarrow disadvantage of flat cones

Preliminary designed wall thickness together with all allowances is

$\mathrm{s}_{1}=\mathrm{s}_{\mathrm{R} 1}+\mathrm{c}=14.04+1 \approx 15.0 \mathrm{~mm}$
Calculating diameter of a smooth conical shell without torus in connection with the cylinder (used in next calculations)
$D_{K}=D-1.4 * a_{1} * \sin \alpha_{1}$
where is

$$
\begin{array}{ll}
a_{1}=0.7 * \sqrt{\frac{D}{\cos \alpha_{1}} *\left(s_{1}-c\right)} & \begin{array}{l}
\text { Calculated length of transition part } \\
\text { (it corresponds to the reach of stress peak) }
\end{array} \\
a_{1}=0.7 * \sqrt{\frac{1486}{\cos 70} *(15.0-1)}=172.6 \mathrm{~mm} & \left(\times \text { for } 45^{\circ} \text { and } s_{1}=8 \mathrm{~mm} \text { was } \mathrm{a}_{1}=84.6 \mathrm{~mm}\right) \\
\mathbf{D}_{\mathrm{C}}=1486-1.4 * 172.6 * \sin 70=1259 \mathrm{~mm} \quad(\times 1402 \mathrm{~mm})
\end{array}
$$

Checking of the preliminary specified wall thickness for the external overpressure

Allowed external overpressure

$$
[p]=\frac{[p]_{\rho}}{\sqrt{1+\left(\frac{[p]_{p}}{[p]_{\varepsilon}}\right)^{2}}}
$$

Allowed external overpressure in plastic state (region)
(similar relationship to internal pressure = achieving of allowable stress in the shell)

$$
[p]_{P}=\frac{2 * \sigma_{D} *\left(s_{1}-c\right)}{\frac{D_{C}}{\cos \alpha_{1}}+\left(s_{1}-c\right)}=\frac{2 * 140 *(15.0-1)}{\frac{1259}{\cos 70}+(15.0-1)}=1.061 \mathrm{MPa}
$$

(x for 45° and
estimation 8 mm it was 0.556 MPa)

Allowed external overpressure in elastic state (region) (stability loss in the elastic region, it is for $\sigma<\sigma_{D}$)

$$
[p]_{E}=\frac{20.8 * 10^{-6} * E}{n_{U} * B_{1}} * \frac{D_{E}}{l_{E}} *\left[\frac{100 *\left(s_{1}-c\right)}{D_{E}}\right]^{2} * \sqrt{\frac{100 *\left(s_{1}-c\right)}{D_{E}}}
$$

$n_{U}=2,4 \ldots$ safety coefficient against a stability loss (see cylinder) where effective dimensions of a conical shell are:

$$
l_{E}=\frac{D-d_{1}}{2 * \sin \alpha_{1}}=\frac{1486-150}{2 * \sin 70}=710.9 \mathrm{~mm}
$$

$D_{\varepsilon}=\operatorname{Max}\left\{D_{\varepsilon 1} ; D_{\varepsilon 2}\right\}$
effective length of conical shell $\times 944.7$ mm
effective diameter of conical shell $\times 1156.8 \mathrm{~mm}$

$$
D_{E 1}=\frac{D+d_{1}}{n_{U} * \cos \alpha_{1}}=\frac{1486+150}{2.4 * \cos 70}=2392 \mathrm{~mm}
$$

D - higher diameter
d_{1} - lower diameter
$D_{E 2}=\frac{D}{\cos \alpha_{1}}-0.31 *\left(D+d_{1}\right) * \sqrt{\frac{D+d_{1}}{s_{1}-c}} * \operatorname{tg} \alpha_{1}$

$$
D_{E 2}=\frac{1486}{\cos 70}-0.31 *(1486+150) * \sqrt{\frac{1486+150}{15.0-1}} * \operatorname{tg} 70=-12890 \mathrm{~mm}
$$

$$
D_{E}=2392 \mathrm{~mm}
$$

Parameter B_{1} is specified from equation

$$
B_{1}=\operatorname{Min}\left\{B_{11}=1.0 ; B_{12}=9.45 * \frac{D_{E}}{l_{E}} * \sqrt{\frac{D_{E}}{100 *\left(s_{1}-c\right)}}\right\}
$$

like for the cylinder

$$
B_{12}=9.45 * \frac{2392}{710.9} * \sqrt{\frac{2392}{100 *(15.0-1)}}=41.56
$$

$\mathrm{B}_{1}=1.0$
Allowed external overpressure in elastic state (region) is

$$
\begin{array}{r}
{[p]_{E}=\frac{20.8 * 10^{-6} * 206 * 10^{3}}{2.4 * 1.0} * \frac{2392}{710.9} *\left[\frac{100 *(15-1)}{2392}\right]^{2} * \sqrt{\frac{100 *(15-1)}{2392}}} \\
{[p]_{E}=1.574 \mathrm{MPa} \quad\left(x \text { for } 45^{\circ} \text { it was } 0.622 \mathrm{MPa}\right)}
\end{array}
$$

Then is the maximal allowed external overpressure for the preliminary specified cone wall thickness $\mathrm{s}_{1}=15 \mathrm{~mm}$

$$
[p]=\frac{1.061}{\sqrt{1+\left(\frac{1.061}{1.574}\right)^{2}}}=0.880 \mathrm{MPa} \geq 0.100 \mathrm{MPa} \quad \begin{aligned}
& \rightarrow 8.8 \times \text { overdesigned } \\
& \text { preliminary estimation }
\end{aligned} \quad \begin{aligned}
& \times 0.526 \mathrm{MPa}\left(\text { for } 45^{\circ}\right)
\end{aligned}
$$

Such conical shell is for the wall thickness $s_{1}=\mathbf{1 5 ~ m m}$ again too overdesigned. Therefore we will repeat these calculations for a newly estimated cone wall thickness.

Note:
When calculating the cylindrical part of the vessel to the external overpressure the calculated wall thickness was $s_{R}=4.8 \mathrm{~mm}$, it means that the realized wall thickness (with allowances for corrosion etc.) was about 6 mm.
b) New estimation of the preliminary designed wall cone thickness together with all allowances
$s_{1}=s_{R 1}+c=5+1 \approx 6 \mathrm{~mm}$
(x for 45° it was $\mathrm{s}_{1}=5.0 \mathrm{~mm}$)

Calculating diameter of a smooth conical shell without torus in connection with the cylinder (used in next calculations)
$D_{C}=D-1.4^{*} a_{1}{ }^{*} \sin \alpha_{1}$
where is

$$
\begin{aligned}
& a_{1}=0.7 * \sqrt{\frac{D}{\cos \alpha_{1}} *\left(s_{1}-c\right)} \\
& a_{1}=0.7 * \sqrt{\frac{1486}{\cos 70} *(6-1)}=103.2 \mathrm{~mm} \quad\left(x \text { for } 45^{\circ} \text { it was } 64.1 \mathrm{~mm}\right)
\end{aligned}
$$

$D_{C}=1486-1.4 * 103.2 * \sin 70=1350 \mathrm{~mm}$
Checking of the preliminary specified wall thickness for the external overpressure Allowed external overpressure

$$
[p]=\frac{[p]_{\rho}}{\sqrt{1+\left(\frac{[p]_{\rho}}{[p]_{\varepsilon}}\right)^{2}}}
$$

Allowed external overpressure in plastic state (region)

$$
[p]_{P}=\frac{2 * \sigma_{D}^{*}\left(s_{1}-c\right)}{\frac{D_{K}}{\cos \alpha_{1}}+\left(s_{1}-c\right)}=\frac{2 * 140 *(6-1)}{\frac{1350}{\cos 70}+(6-1)}=0.354 M P a
$$

x for 70° and preliminary estimation $\mathrm{s}_{1}=15 \mathrm{~mm}$ it was 0.556 MPa

Allowed external overpressure in elastic state (region)

$$
[p]_{E}=\frac{20,8 * 10^{-6} * E}{n_{v} * B_{1}} * \frac{D_{E}}{l_{E}} *\left[\frac{100 *\left(s_{1}-c\right)}{D_{E}}\right]^{2} * \sqrt{\frac{100 *\left(s_{1}-c\right)}{D_{E}}}
$$

where effective dimensions of a conical shell are:

$$
l_{E}=\frac{D-d_{1}}{2 * \sin \alpha_{1}}=\frac{1486-150}{2 * \sin 70}=710.9 m m \quad D_{E E D-e x .6}=\operatorname{Max}\left\{D_{E 1} ; D_{E 2}\right\}
$$

$$
D_{E 1}=\frac{D+d_{1}}{n_{U} * \cos \alpha_{1}}=\frac{1486+150}{2.4 * \cos 70}=2392 \mathrm{~mm}
$$

$$
D_{E 2}=\frac{D}{\cos \alpha_{1}}-0.31 *\left(D+d_{1}\right) * \sqrt{\frac{D+d_{1}}{s_{1}-c}} * \operatorname{tg} \alpha_{1}
$$

$$
\begin{aligned}
& D_{E 2}=\frac{1486}{\cos 70}-0,31 *(1486+150) * \sqrt{\frac{1486+150}{6-1}} * \operatorname{tg} 70=-23033 \mathrm{~mm} \\
& \mathbf{D}_{\mathbf{E}}=2392 \mathrm{~mm}
\end{aligned}
$$

$$
B_{1}=\operatorname{Min}\left\{B_{11}=1.0 ; B_{12}=9.45 * \frac{D_{E}}{l_{E}} * \sqrt{\frac{D_{E}}{100 *\left(s_{1}-c\right)}}\right\}
$$

$$
B_{12}=9.45 * \frac{2392}{710.9} * \sqrt{\frac{2392}{100 *(6-1)}}=69.5
$$

$$
B_{1}=1.0
$$

$$
[p]_{E}=\frac{20.8 * 10^{-6} * 206 * 10^{3}}{2.4 * 1.0} * \frac{2392}{710.9} *\left[\frac{100 *(6-1)}{2392}\right]^{2} * \sqrt{\frac{100 *(6-1)}{2392}}
$$

$$
[p]_{E}=0.120 \mathrm{MPa}
$$

(x for 45° and $\mathrm{s}_{1}=5.0 \mathrm{~mm}$ it was 0.154 MPa)

Then is the maximal allowed external overpressure for this specified cone wall thickness $s_{1}=6 \mathrm{~mm}$

$$
[p]=\frac{0.354}{\sqrt{1+\left(\frac{0.354}{0.120}\right)^{2}}}=0.114 M P a \geq 0.100 \mathrm{MPa}
$$

(x for 45° and $s_{1}=5.0 \mathrm{~mm}$ it was 0.148 MPa)
(x for 70° and $s_{1}=15.0 \mathrm{~mm}$ it was 0.880 MPa)

Realized wall thickness $s_{1}=8 \mathrm{~mm}$ of the conical cover is sufficient for this higher angle too.

Summary of results

half apex angle internal overpressure external overpressure 100 kPa 100 kPa calculated wall thickness (mm)

$\alpha=0^{\circ} \quad 0.54$
 (cylinder)

$$
\alpha=45^{\circ} \quad 1.0
$$

3.5
(cone)

$$
\alpha=70^{\circ}
$$

(cone)

Note:

- From the viewpoint of internal overpressure is preferable cylindrical vessel.
- From the viewpoint of external overpressure (stability = collapse) is preferable sharper cone

Design of conical bottom for $\alpha=70^{\circ}$ according European standard ES 13445-3

These calculations are performed according the ES 13445-3, part 8.6.3. that was several times amended. The last change was in 2010.

These calculations are valid for $\alpha \leq 75^{\circ}$.

Because the standard uses quite different symbols I show the sketch of the conical cover again with these new symbols.

Characteristic dimensions

Internal radius of cylindrical shell

$$
R_{\max }=D_{i} / 2=1486 / 2=743 \mathrm{~mm}
$$

(as in the case of ES for cylinder is not the analyzed thickness calculated, but is estimated)

Analyzed wall thickness of the conical shell without allowances

$$
e_{a}=s_{1}-c=6-1=5 \mathrm{~mm} \quad \text { (it corresponds to the calculated thickness) }
$$

(we consider the wall thicknes specified according the ČSN, that is checked according the EN)

Mean radius of the conical shell

$$
R_{n}=\left(R_{\max }+R_{T R}\right) / 2=(743+150 / 2) / 2=409 \mathrm{~mm}
$$

Height of the conical shell

$$
\mathrm{L}=240 \mathrm{~mm}
$$

$$
\begin{aligned}
& \mathrm{L}=\mathrm{H} ; \\
& \mathrm{R}_{\text {max }}=\mathrm{D}_{\mathrm{i}} / 2 ; \\
& \mathrm{R}_{\mathrm{TR}}=\mathrm{d}_{1 i} / 2
\end{aligned}
$$

Check of the shell against a stability loss between two reinforcements (it is cylindrical parts = shell and neck).
(the cone is without any reinforcement $\rightarrow \mathrm{L}=\mathrm{H}$)
According part. 8.4.3 (eq. 8.4.3-1) is the allowed elastic limit

$$
\sigma_{\mathrm{e}}=\mathrm{R}_{\mathrm{P} 0.2 / \mathrm{t}} / 1.25=210 / 1.25=168 \mathrm{MPa}
$$

where $R_{\text {P0.2/t }}=R_{\text {emin }}=\mathbf{2 1 0} \mathrm{MPa}$ is the yield point for working temperature.

$$
\text { (x according ČSN is } \sigma_{D}=140 \mathrm{MPa} \text {) }
$$

Then is a pressure P_{γ}, at what a mean tangential stress reaches the yield point in the center of shell between reinforcements

$$
\begin{aligned}
& P_{Y}=\left(e_{a}^{*} \sigma_{\mathrm{e}}^{*} \cos \alpha\right) / R_{\max }<\begin{array}{l}
s=p^{*} R / \sigma_{\mathrm{D}}{ }^{*} \cos \alpha_{1} \rightarrow \\
\mathrm{p}=\mathrm{s}^{*} \sigma_{\mathrm{D}}{ }^{*} \cos \alpha_{1} / \mathrm{R}
\end{array} \\
& \mathrm{P}_{\mathrm{Y}}=(5 * 168 * \cos 70) / 743=0.387 \mathrm{MPa} \times 0.354 \mathrm{MPa}
\end{aligned}
$$

Now we can specify a theoretic pressure for an elastic loss of stability of the shell wall

$$
P_{\mathrm{m}}=\left(\mathrm{E}^{*} \mathrm{e}_{\mathrm{a}}^{*} \varepsilon * \cos ^{3} \alpha\right) / \mathrm{R}_{\mathrm{n}}
$$

where the value ε is specified from fig. 8.5-3 (see the next page) for
$\mathrm{L} /\left(2 * \mathrm{R}_{\mathrm{n}} * \cos \alpha\right)=240 /(2 * 409 * \cos 70)=0.858$ instead (L/2R) for cylinder in the ČSN (dimensionless length) and
$\left(2 * R_{n} * \cos \alpha\right) / e_{a}=(2 * 409 * \cos 70) / 5=55.95$ instead (s / R) for cylinder in the čSN (dimensionless wall thickness).

$2 R / e_{a}=$ reciprocal value of dimensionless thickness of the wall
x according ČSN

It follows from the diagram

$$
\varepsilon \approx 0,004
$$

Then we can specify the value P_{m}
$=$ theoretical pressure at the elastic stability loss of conical shell

$$
\begin{aligned}
& P_{m}=\left(206000 * 5 * 0,004 * \cos ^{3} 70\right) / 409=0.403 \mathrm{MPa} \\
& \mathrm{E}(\mathrm{MPa}) \mathrm{s}(\mathrm{~mm}) \quad \varepsilon(-) \quad \mathrm{R}_{\mathrm{n}}(\mathrm{~mm})
\end{aligned}
$$

Now we specify a ratio $\quad P_{m} / P_{Y}=0.403 / 0.387=1.04$.
(teor. pressure at elastic stability loss / teor. pressure when is reached allowed stress)
For curve 1 from following diagram 8.5-5 a ratio $P_{r} / P_{y} \approx 0,53$ is found and from it the low limit of the calculating external overpressure for the stability loss.

$$
P_{r}=0.53 * P_{Y}=0.53 * 0.387=0.205 \mathrm{MPa}
$$

Fig. 8.5-5 - Values Pr/Py as function of Pm/Py

Maximal calculating overpressure for the realized wall thickness must conform to the condition (8.6.3-5)

$$
P \leq P_{r} / S
$$

where $S=1.5$ is safety coefficient according part 8.4.4

$$
\mathrm{P} \leq 0,205 / 1.5=0.137 \mathrm{MPa}
$$

Real maximal theoretic external overpressure is 0.100 MPa . From it follows that according the ES is the conical shell O.K.

Comparison of results for $\alpha_{1}=70^{\circ}$

calculated wall thickness
According new ČSN According old ČSN

According ES

$$
\begin{array}{ll}
s=6 \mathrm{~mm} & 0,114 \mathrm{MPa} \\
s=5.4 \mathrm{~mm} & 0,100 \mathrm{MPa} \\
\mathrm{~s}=6 \mathrm{~mm} & 0,111 \mathrm{MPa} \\
\mathrm{~s}=6 \mathrm{~mm} & 0,137 \mathrm{MPa}
\end{array}
$$

